Modelling Biological Evolution 2013: Conference Highlights

Over the last couple of days I have been attending the Modelling Biological Evolution conference at the University of Leicester organized by Andrew Morozov.

For me, the most interesting theme to have emerged is work on evolutionary branching: conditions under which polymorphisms (or even speciation) might arise. These were all talked about in the context of mathematical models (ODE-type formulations based on generalized Lotka-Volterra systems). The best talk I attended was by Andrew White (Heriot Watt University). He described various system of parasite-host co-evolution, the most interesting of which demonstrated increases in diversity: a new host could emerge that was resistant to current parasites, following which a new parasite could emerge that would infect that host. He rather nicely linked that work to experimental work from Mike Brockhurst (University of York) on phage infections of bacteria showing similar patterns. The results could of course be interpreted at a speciation level, or, probably more fairly, at the level of molecular diversification (e.g. of MHC types in an immune system). What I really appreciated about this resut is that it spoke to the idea that increased diversity can result through a positive feedback mechanism: diversification leads to new niches and thus the potential for further diversification. I have thought for some time that this is the most important mechanism that drives diversification / speciation in natural systems and it was nice to see an example of the mechanism in action.

The other talk I particularly appreciated on the subject was by Claus Rueffler (University of Vienna). He spoke about a result on complexity and diversity in Doebeli and Ispolatov 2010 that also contains this feedback idea. This paper relies on a specific model to obtain its result on conditions for evolutionary branching. Rueffler demonstrated general conditions under which branching might take place that depend only upon the properties of the Hessian matrix associated with key parameters in model space. The important point is that the analysis is model-independent: it only considers the properties of the model forms needed to obtain the result.

Similar ideas were presented by Eva Kisdi (University of Helsinki). She focussed on models that include evolutionary trade-offs (e.g. between virulence and transmissibility): her point was that instead of choosing a function and analyzing its consequences, one could consider desired properties of a model (e.g. branching or limit cycles) and then use “critical function analysis” to derive conditions for possible trade-off functions that would admit the desired behaviour. Eva made the important point that many models make ad hoc choices of functions and thus lead to ad hoc results of little predictive value.

I think Eva’s point really touched on some of the weaknesses that emerged in many of the talks that I attended: there was a great deal of theory (some of which was very good), but very little interface with real biological data. I find this somewhat surprising: modelling in ecology and evolution has been around for very much longer that modelling in say molecular biology (where I currently work), and yet seems to be less mature. I think that the field would really benefit from far greater interaction between theoretical and experimental researchers. Ideally, models should be looking to generate empirically falsifiable hypotheses.

Perhaps the most entertaining talks were given by Nadav Shnerb and David Kessler (both Bar Ilan University). Nadav’s first talk was about power-law-like distributions observed in genus/species distributions. Core to his work is Stephen Hubbell’s neutral theory of biodiversity.
Nadav showed that distributions of number of species within genera could be explained by a neutral model for radiation and the genus and species level coupled with extinction. Nadav’s most important point was that if you wish to make an argument that a certain observed trait is adaptive, then you have to rule out the null hypothesis that it could arise neutrally through mutation/drift. I hope that is something we addressed with regards global regulators in gene regulatory networks in Jenkins and Stekel 2010. David spoke about biodiversity distributions also, showing that adaptive forces could explain biodiversity data (they are generally poor at this due to competitive exclusion that occurs in many models) if the fitness trait is allowed a continuous rather than discrete distribution.

Nadav’s second talk was about first names of babies. This was very interesting – especially as I have a young family (and a daughter with a very old-fashioned name). He looked at the error distribution (easily shown to be binomial-like noise proportional to square root of mean) that is superimposed on a deterministic increase and decrease in popularity of a name over a 60 year period. His thesis was that the error distribution due to external events would be proportional to mean (not root mean), and, as only 5 names in his data set (Norwegian names in ~ 20th Century) did not fit binomial noise, he ruled out external events (e.g. celebrity) as being a major driver. The problem I have with this is that he didn’t rule out external events in the deterministic part of the data (e.g. initiating a rise in popularity of a name that then follows the deterministic feedback law he proposed).

Advertisements

One thought on “Modelling Biological Evolution 2013: Conference Highlights

  1. Pingback: Evolution of Novelty and Diversity: an open research idea | Dov Stekel's Laboratory

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s