New Publication: Reconstructing promoter activity from Lux bioluminescent reporters

Absolutely delighted to report that our paper has been published:

Iqbal M, Doherty N, Page AML, Qazi SNA, Ajmera I,  Lund PA, Kyraios T, Scott DJ, Hill PJ and Stekel DJ (2017) Reconstructing promoter activity from Lux bioluminescent reporters. PLOS Computational Biology 13(9): e1005731.


The bacterial Lux system is used as a gene expression reporter. It is fast, sensitive and non-destructive, enabling high frequency measurements. Originally developed for bacterial cells, it has also been adapted for eukaryotic cells, and can be used for whole cell biosensors, or in real time with live animals without the need for euthanasia. However, correct interpretation of bioluminescent data is limited: the bioluminescence is different from gene expression because of nonlinear molecular and enzyme dynamics of the Lux system. We have developed a computational approach that, for the first time, allows users of Lux assays to infer gene transcription levels from the light output. This approach is based upon a new mathematical model for Lux activity, that includes the actions of LuxAB, LuxEC and Fre, with improved mechanisms for all reactions, as well as synthesis and turn-over of Lux proteins. The model is calibrated with new experimental data for the LuxAB and Fre reactions from Photorhabdus luminescens—the source of modern Lux reporters—while literature data has been used for LuxEC. Importantly, the data show clear evidence for previously unreported product inhibition for the LuxAB reaction. Model simulations show that predicted bioluminescent profiles can be very different from changes in gene expression, with transient peaks of light output, very similar to light output seen in some experimental data sets. By incorporating the calibrated model into a Bayesian inference scheme, we can reverse engineer promoter activity from the bioluminescence. We show examples where a decrease in bioluminescence would be better interpreted as a switching off of the promoter, or where an increase in bioluminescence would be better interpreted as a longer period of gene expression. This approach could benefit all users of Lux technology.

Author summary

Bioluminescent reporters are used in many areas of biology as fast, sensitive and non-destructive measures of gene expression. They have been developed for bacteria, adapted now for other kinds of organisms, and recently been used for whole cell biosensors, and for real-time live animal models for infection without the need for euthanasia. However, users of Lux technologies rely on the light output being similar to the gene expression they wish to measure. We show that this is not the case. Rather, there is a nonlinear relationship between the two: light output can be misleading and so limits the way that such data can be interpreted. We have developed a new computational method that, for the first time, allows users of Lux reporters to infer accurate gene transcription levels from bioluminescent data. We show examples where a small decrease in light would be better interpreted as promoter being switched off, or where an increase in light would be better interpreted as promoter activity for a longer time.


Thanks to all my brilliant collaborators and coauthors. Thanks also to the lovely referees (one of whom signed their review) who said of the article: “an extremely important contribution to the field” (Reviewer 1) and “a significant advance” (Reviewer 2) and  provided helpful and constructive feedback.




First use of bioRxiv: Reconstructing Promoter Activity From Lux Bioluminescent Reporters

Today I have made a new publication foray and submitted a manuscript to bioRxiv. This is the main paper to have come out of work on our BBSRC Lux grant. We are yet to find a peer-review home – but one of our co-authors has already had a conversation with someone who wants to use the method – so it was time to put the manuscript out there while we continue with the peer-review process. R code and Biomodels submission will follow. The manuscript details are:

PhD Opportunity: Geospatial modelling the spread of antimicrobial resistance in the environment

We are looking for an excellent candidate for a PhD in Geospatial modelling the spread of antimicrobial resistance in the environment, funded by the NERC Envision doctoral training programme, supervised jointly by myself, Stuart Marsh (Nottingham Geospatial Institute), Malcolm Bennett (School of Veterinary Medicine and Science) and Andrew Singer (Centre for Ecology and Hydrology). Details of the project are below. Please apply by 6th January on

Project Description

Antimicrobial resistance (AMR) is a major global challenge. It is estimated that globally 700,000 human deaths per year are due to AMR, predicted to rise to 10 million by 2050. While much research is in medical/agricultural contexts, the spread of AMR in the environment is often neglected. Antimicrobials and antimicrobial resistant genes (ARGs) and organisms have sources in agriculture and wastewater treatment plants (WWTP), which are spread on land through slurry, manures or sewage sludge, or released directly into rivers. Soil and water polluted by antimicrobials and resistant bacteria can impact crops, animals and humans. Thus, AMR presents both an environmental and human health hazard.

Our vision is to develop mathematical models that can predict AMR spread in the environment. Such modelling will require numerous factors, including: prevalence of ARGs and the relative role of different AMR sources, pathways, drivers and receptors. These models would be used to inform policy on the priorities for controlling AMR in agriculture and the wider natural environment and on the most appropriate specific actions following an outbreak of an AMR pathogen. They will also help prioritise AMR surveillance. Most mathematical modelling for the environmental spread of AMR operates locally, e.g. in a slurry tank, field soil or a WWTP, or a smaller still, e.g. a biofilm. A challenge is to develop predictive models at much larger environmental scales.

This PhD project will begin to address this challenge, by following four novel modelling approaches: incorporation of the heterogeneity of AMR agents; using a combination of deterministic and stochastic models to account for both microscopic and population level scales; up-scaling the current approaches to an environmental scale by using methods developed for geospatial modelling of pollutants; and calibrating the models with geospatially explicit environmental AMR surveillance data from our projects and those of our collaborators.

Funding Notes

Applicants should hold a minimum of a UK Honours Degree at 2:1 level or equivalent in any relevant scientific discipline with considerable quantitative component (mathematics, physics, computer science, engineering). They must be able to evidence excellent mathematical and computer programming skills, a willingness to work across multi-disciplinary boundaries, including physical geography and microbiology.

Full studentships are available to UK/EU candidates who’ve been ordinarily resident in the UK throughout the 3-year period immediately preceding the date of an award. EU candidates who’ve not been resident in the UK for the last 3-years are eligible for “tuition fees-only” awards (no maintenance grant).

New publication: Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate

We are delighted that our second paper – and first modelling paper – on antimicrobial resistance in slurry has been pubished, also in FEMS Microbial Ecology.

Baker M, Hobman JL, Dodd CER, Ramsden SJ and Stekel DJ (2016). Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS Microbial Ecology DOI:10.1093/femsec/fiw040.

The work came from the very short post that Michelle spent with us – funded by pump prime money from the school. Both the experimental paper (led by Jon Hobman) and the modelling paper have been accepted for the Virtual Issue of FEMS Microbial Ecology: Environmental Dimension of Antibiotic Resistance associated with the EDAR 2015 conference we attended last year. These papers can show the value and importance of timely institutional pump prime support.


Antimicrobial resistance is of global concern. Most antimicrobial use is in agriculture; manures and slurry are especially important because they contain a mix of bacteria, including potential pathogens, antimicrobial resistance genes and antimicrobials. In many countries, manures and slurry are stored, especially over winter, before spreading onto fields as organic fertilizer. Thus these are a potential location for gene exchange and selection for resistance. We develop and analyze a mathematical model to quantify the spread of antimicrobial resistance in stored agricultural waste. We use parameters from a slurry tank on a UK dairy farm as an exemplar. We show that the spread of resistance depends in a subtle way on the rates of gene transfer and antibiotic inflow. If the gene transfer rate is high, then its reduction controls resistance, while cutting antibiotic inflow has little impact. If the gene transfer rate is low, then reducing antibiotic inflow controls resistance. Reducing length of storage can also control spread of resistance. Bacterial growth rate, fitness costs of carrying antimicrobial resistance and proportion of resistant bacteria in animal faeces have little impact on spread of resistance. Therefore effective treatment strategies depend critically on knowledge of gene transfer rates.

New publication: A Bayesian approach to analyzing phenotype microarray data enables estimation of microbial growth parameters

Delighted to say that our first paper of 2016 is published. Matthias’s Biolog paper is now online-ready with the Journal of Bioinformatics and Computational Biology. This is also the first output from our Biolog grant – with a second paper detailing our newer software and analysis being planned.

Gerstgrasser M, Nicholls S, Stout M, Smart K, Powell C, Kypraios T and Stekel DJ. 2016. A Bayesian approach to analyzing phenotype microarray data enables estimation of microbial growth parameters. J Bioinform Comput Biol. DOI: 10.1142/S0219720016500074


Biolog phenotype microarrays (PMs) enable simultaneous, high throughput analysis of cell cultures in different environments. The output is high-density time-course data showing redox curves (approximating growth) for each experimental condition. The software provided with the Omnilog incubator/reader summarizes each time-course as a single datum, so most of the information is not used. However, the time courses can be extremely varied and often contain detailed qualitative (shape of curve) and quantitative (values of parameters) information. We present a novel, Bayesian approach to estimating parameters from Phenotype Microarray data, fitting growth models using Markov Chain Monte Carlo (MCMC) methods to enable high throughput estimation of important information, including length of lag phase, maximal “growth” rate and maximum output. We find that the Baranyi model for microbial growth is useful for fitting Biolog data. Moreover, we introduce a new growth model that allows for diauxic growth with a lag phase, which is particularly useful where Phenotype Microarrays have been applied to cells grown in complex mixtures of substrates, for example in industrial or biotechnological applications, such as worts in brewing. Our approach provides more useful information from Biolog data than existing, competing methods, and allows for valuable comparisons between data series and across different models.

New publication: The dynamic balance of import and export of zinc in Escherichia coli suggests a heterogeneous population response to stress

I am absolutely delighted to see the (online) publication today of our paper:

Takahashi H, Oshima T, Hobman JL, Doherty N, Clayton SR, Iqbal M, Hill PJ, Tobe T, Ogasawara N, Kanaya S and Stekel DJ 2015. The dynamic balance of import and export of zinc in Escherichia coli suggests a heterogeneous population response to stress. Journal of the Royal Society Interface DOI: .

The abstract is at the bottom of the post. First I want to say why I am so happy about this particular paper.

1. This is the first piece of work I have published in which I have made a successful funding application (I say “I” loosely, as Taku Oshima wrote the Japanese part of the bid along with Naotake Ogasawara, Shigehiko Kanaya and Toru Tobe, and Jon Hobman wrote much of the UK part of the bid; however, I was PI as this was a Systems Biology call); led the research (most of the hard work was done by Hiroki Takahashi and Taku Oshima); wrote the paper (different parts were written by different people – almost all authors made an important contribution); and have seen the paper published. A complete cycle of more than 5 years from grant application to publication.

2. This is the first paper on which I am corresponding author that contains new experimental results. More than that, I played an important role in devising many of the experiments (time courses and viable cell count assays) – not in terms of technical details (in which I have little expertise) but in terms of what experiments we need and why we need to do them.

3. This is the first time I have come a complete “Systems Biology” cycle: from experiments, to models, to predictions, to experimental confirmation, to a new model and then new predictions.

4. Some of the most important ideas in this paper came as a result of one of the most enjoyable weeks in my scientific career. Hiroki, Jon, Selina and I were all attending the Biometals Conference in Brussels in July 2012. While Hiroki and I attended a few sessions of the conference, most of the time we spent in our hotel lobby trying to get the model to fit the data. The first data we had were the LB data, which the model could fit without too much trouble. When Taku asked me what other data we needed, I said: “time series, with different concentrations of zinc”, and by the conference we had those data too. Only one problem: the model no longer fitted the data.

Hiroki and I spent that week trying to work out how to get the model to work. Each morning, we sat in the hotel lobby, and over endless cups of tea, we devised new versions of the model; each afternoon Hiroki would code them up, and then run them overnight on the supercomputer in Japan. And the next morning, the model would still not fit the data. By the last day we were tearing our hair out: nothing we could think of would work. We had one last (desperate) idea: ditch the 100uM zinc data. Boom! The model fitted the 12.5uM zinc data just fine! And this led to the heterogeneity hypothesis, the viable cell count assay, the stochastic model, and all the results that make this paper exciting. It is that kind of week that we go into careers in science for: the frustration and delight of grappling with and overcoming a difficult problem.

5. As alluded to in the previous points, it has been an absolute delight working with my coauthors on this paper, and I have many happy memories in the UK, Japan and Brussels.

6. Finally, on a more personal note: we received this funding on 17th March 2010. In between receiving the funding and having the paper published (5 years later) I have got married (July 2010), had a baby (July 2011), had another baby (November 2013) and am now more tired yet more happy than at any other point in my life 🙂

Now for the abstract!


Zinc is essential for life, but toxic in excess. Thus all cells must control their internal zinc concentration. We used a systems approach, alternating rounds of experiments and models, to further elucidate the zinc control systems in Escherichia coli. We measured the response to zinc of the main specific zinc import and export systems in the wild-type, and a series of deletion mutant strains. We interpreted these data with a detailed mathematical model and Bayesian model fitting routines. There are three key findings: first, that alternate, non-inducible importers and exporters are important. Second, that an internal zinc reservoir is essential for maintaining the internal zinc concentration. Third, our data fitting led us to propose that the cells mount a heterogeneous response to zinc: some respond effectively, while others die or stop growing. In a further round of experiments, we demonstrated lower viable cell counts in the mutant strain tested exposed to excess zinc, consistent with this hypothesis. A stochastic model simulation demonstrated considerable fluctuations in the cellular levels of the ZntA exporter protein, reinforcing this proposal. We hypothesize that maintaining population heterogeneity could be a bet-hedging response allowing a population of cells to survive in varied and fluctuating environments.

New Publication: Analysis of Occludin Trafficking, Demonstrating Continuous Endocytosis, Degradation, Recycling and Biosynthetic Secretory Trafficking

We are delighted that our work with Josh Rappoport‘s laboratory, supported by the Birmingham-Nottingham Strategic Collaboration Fund, has led to successful publication. Well done to all, especially Sarah Fletcher who carried out all the experimental work, Mudassar Iqbal who did the model data fitting, and Sara Jabbari who has helped out both Mudassar with the modelling and Sarah with sorting out journal requirements.

Fletcher, S.J., Iqbal, M., Jabbari, S., Stekel, D.J. and Rappoport, J.Z. 2014. Analysis of Occludin Trafficking, Demonstrating Continuous Endocytosis, Degradation, Recycling and Biosynthetic Secretory Trafficking. PLoS ONE DOI: 10.1371/journal.pone.0111176.


Tight junctions (TJs) link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK) epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes). By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ~20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.