New Publication: Reconstructing promoter activity from Lux bioluminescent reporters

Absolutely delighted to report that our paper has been published:

Iqbal M, Doherty N, Page AML, Qazi SNA, Ajmera I,  Lund PA, Kyraios T, Scott DJ, Hill PJ and Stekel DJ (2017) Reconstructing promoter activity from Lux bioluminescent reporters. PLOS Computational Biology 13(9): e1005731. https://doi.org/10.1371/journal.pcbi.1005731.

Abstract

The bacterial Lux system is used as a gene expression reporter. It is fast, sensitive and non-destructive, enabling high frequency measurements. Originally developed for bacterial cells, it has also been adapted for eukaryotic cells, and can be used for whole cell biosensors, or in real time with live animals without the need for euthanasia. However, correct interpretation of bioluminescent data is limited: the bioluminescence is different from gene expression because of nonlinear molecular and enzyme dynamics of the Lux system. We have developed a computational approach that, for the first time, allows users of Lux assays to infer gene transcription levels from the light output. This approach is based upon a new mathematical model for Lux activity, that includes the actions of LuxAB, LuxEC and Fre, with improved mechanisms for all reactions, as well as synthesis and turn-over of Lux proteins. The model is calibrated with new experimental data for the LuxAB and Fre reactions from Photorhabdus luminescens—the source of modern Lux reporters—while literature data has been used for LuxEC. Importantly, the data show clear evidence for previously unreported product inhibition for the LuxAB reaction. Model simulations show that predicted bioluminescent profiles can be very different from changes in gene expression, with transient peaks of light output, very similar to light output seen in some experimental data sets. By incorporating the calibrated model into a Bayesian inference scheme, we can reverse engineer promoter activity from the bioluminescence. We show examples where a decrease in bioluminescence would be better interpreted as a switching off of the promoter, or where an increase in bioluminescence would be better interpreted as a longer period of gene expression. This approach could benefit all users of Lux technology.

Author summary

Bioluminescent reporters are used in many areas of biology as fast, sensitive and non-destructive measures of gene expression. They have been developed for bacteria, adapted now for other kinds of organisms, and recently been used for whole cell biosensors, and for real-time live animal models for infection without the need for euthanasia. However, users of Lux technologies rely on the light output being similar to the gene expression they wish to measure. We show that this is not the case. Rather, there is a nonlinear relationship between the two: light output can be misleading and so limits the way that such data can be interpreted. We have developed a new computational method that, for the first time, allows users of Lux reporters to infer accurate gene transcription levels from bioluminescent data. We show examples where a small decrease in light would be better interpreted as promoter being switched off, or where an increase in light would be better interpreted as promoter activity for a longer time.

 

Thanks to all my brilliant collaborators and coauthors. Thanks also to the lovely referees (one of whom signed their review) who said of the article: “an extremely important contribution to the field” (Reviewer 1) and “a significant advance” (Reviewer 2) and  provided helpful and constructive feedback.

 

 

Advertisements

New Publication: Global transcription regulation of RK2 plasmids: a case study in the combined use of dynamical mathematical models and statistical inference for integration of experimental data and hypothesis exploration.

Today we have published a new article in BMC Systems Biology:

Herman, D., Thomas, C.M. and Stekel, D.J. 2011. Global transcription regulation of RK2 plasmids: a case study in the combined use of dynamical mathematical models and statistical inference for integration of experimental data and hypothesis exploration. BMC Systems Biology 2011, 5:119.

This is Dorota’s first published research article so big congratulations to due to her: a very well-deserved achievement! The paper abstract is:

Background

IncP-1 plasmids are broad host range plasmids that have been found in clinical and environmental bacteria. They often carry genes for antibiotic resistance or catabolic pathways. The archetypal IncP-1 plasmid RK2 is a well-characterized biological system, with a fully sequenced and annotated genome and wide range of experimental measurements. Its central control operon, encoding two global regulators KorA and KorB, is a natural example of a negatively self-regulated operon. To increase our understanding of the regulation of this operon, we have constructed a dynamical mathematical model using Ordinary Differential Equations, and employed a Bayesian inference scheme, Markov Chain Monte Carlo (MCMC) using the Metropolis-Hastings algorithm, as a way of integrating experimental measurements and a priori knowledge. We also compared MCMC and Metabolic Control Analysis (MCA) as approaches for determining the sensitivity of model parameters.

Results

We identified two distinct sets of parameter values, with different biological interpretations, that fit and explain the experimental data. This allowed us to highlight the proportion of repressor protein as dimers as a key experimental measurement defining the dynamics of the system. Analysis of joint posterior distributions led to the identification of correlations between parameters for protein synthesis and partial repression by KorA or KorB dimers, indicating the necessary use of joint posteriors for correct parameter estimation. Using MCA, we demonstrated that the system is highly sensitive to the growth rate but insensitive to repressor monomerization rates in their selected value regions; the latter outcome was also confirmed by MCMC. Finally, by examining a series of model refinements for partial repression by KorA or KorB dimers alone, we showed that a model including partial repression by KorA and KorB was most compatible with existing experimental data.

Conclusions

We have demonstrated that the combination of dynamical mathematical models with Bayesian inference is valuable in integrating diverse experimental data and identifying key determinants and parameters for the IncP-1 central control operon. Moreover, we have shown that Bayesian inference and MCA are complementary methods for identification of sensitive parameters. We propose that this demonstrates generic value in applying this combination of approaches to systems biology dynamical modelling.